Abstract

Endosomal recycling of plasma membrane proteins contributes significantly to the regulation of cellular transport and signaling processes. Members of the Arabidopsis (Arabidopsis thaliana) SORTING NEXIN (SNX) protein family were shown to mediate the endosomal retrieval of transporter proteins in response to external challenges. Our aim is to understand the possible ways through which external stimuli influence the activity of SNX1 in the root. Several proteins are known to contribute to the function of SNX1 through direct protein–protein interaction. We, therefore, compiled a list of all Arabidopsis proteins known to physically interact with SNX1 and employed available gene expression and proteomic data for a comprehensive analysis of the transcriptional and post-transcriptional regulation of this interactome. The genes encoding SNX1-interaction partners showed distinct expression patterns with some, like FAB1A, being uniformly expressed, while others, like MC9 and BLOS1, were expressed in specific root zones and cell types. Under stress conditions known to induce SNX1-dependent responses, two genes encoding SNX1-interacting proteins, MC9 and NHX6, showed major gene-expression variations. We could also observe zone-specific transcriptional changes of SNX1 under iron deficiency, which are consistent with the described role of the SNX1 protein. This suggests that the composition of potential SNX1-containing protein complexes in roots is cell-specific and may be readjusted in response to external stimuli. On the level of post-transcriptional modifications, we observed stress-dependent changes in the phosphorylation status of SNX1, FAB1A, and CLASP. Interestingly, the phosphorylation events affecting SNX1 interactors occur in a pattern which is largely complementary to transcriptional regulation. Our analysis shows that transcriptional and post-transcriptional regulation play distinct roles in SNX1-mediated endosomal recycling under external stress.

Highlights

  • The plasma membrane serves as a cellular border and, thanks to membrane-embedded proteins, it is responsible for selectively permitting signals and material inward and outward

  • We found that the differential phosphorylation of SNX1-complex members under stress occurs in a pattern complementary to transcriptional regulation

  • Presence of many Arabidopsis plasma membrane proteins has been detected in the sorting endosome (Jaillais et al, 2006, 2008; Ivanov and Gaude, 2009; Ivanov et al, 2014)

Read more

Summary

Introduction

The plasma membrane serves as a cellular border and, thanks to membrane-embedded proteins, it is responsible for selectively permitting signals and material inward and outward. The movement of these transmembrane proteins is restricted by their membrane environment and, complex endomembrane trafficking pathways are responsible for their delivery to the plasma membrane (Reyes et al, 2011; Luschnig and Vert, 2014). The EE/TGN-localized V-ATPase is essential for the regulation of secretion and recycling of endosomal proteins such as the brassinosteroid receptor BRI1 and the cellulose synthase A complexes (Luo et al, 2015). V-ATPase components might serve as a pH sensor (Maranda et al, 2001; Hurtado-Lorenzo et al, 2006)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call