Abstract

Opioid use disorder (OUD) is a neuropsychological disease that has a devastating impact on public health. Substantial individual differences in vulnerability exist, the neurobiological substrates of which remain unclear. To address this question, we investigated genome-wide gene transcription (RNA-seq) and chromatin accessibility (ATAC-seq) in the medial prefrontal cortex (mPFC) of male and female rats exhibiting differential vulnerability in behavioral paradigms modeling different phases of OUD: Withdrawal-Induced Anhedonia (WIA), Demand, and Reinstatement. Ingenuity Pathway Analysis (IPA) of RNA-seq revealed greater changes in canonical pathways in Resilient (vs. Saline) rats in comparison to Vulnerable (vs. Saline) rats across 3 paradigms, suggesting brain adaptations that might contribute to resilience to OUD across its trajectory. Analyses of gene networks and upstream regulators implicated processes involved in oligodendrocyte maturation and myelination in WIA, neuroinflammation in Demand, and metabolism in Reinstatement. Motif analysis of ATAC-seq showed changes in chromatin accessibility to a small set of transcription factor (TF) binding sites as a function either of opioid exposure (i.e., morphine versus saline) generally or of individual vulnerability specifically. Some of these were shared across the 3 paradigms and others were unique to each. In conclusion, we have identified changes in biological pathways, TFs, and their binding motifs that vary with paradigm and OUD vulnerability. These findings point to the involvement of distinct transcriptional and epigenetic mechanisms in response to opioid exposure, vulnerability to OUD, and different stages of the disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call