Abstract
Symbiosis- and pathogenesis-related early protein induction patterns in the model legume Medicago truncatula were analysed with two-dimensional differential gel electrophoresis. Two symbiotic soil microorganisms (Glomus intraradices, Sinorhizobium meliloti) were used in single infections and in combination with a secondary pathogenic infection by the oomycete Aphanomyces euteiches. Proteomic analyses performed 6 and 24h after inoculations led to identification of 87 differentially induced proteins which likely represent the M. truncatula root 'interactome'. A set of proteins involved in a primary antioxidant defense reaction was detected during all associations investigated. Symbiosis-related protein induction includes a typical factor of early symbiosis-specific signalling (CaM-2), two Ran-binding proteins of nucleocytoplasmic signalling, and a set of energy-related enzymes together with proteins involved in symbiosis-initiated C- and N-fixation. Pathogen-associated protein induction consists of mainly PR proteins, Kunitz-type proteinase inhibitors, a lectin, and proteins related to primary carbohydrate metabolism and phytoalexin synthesis. Absence of PR proteins and decreased pathogen-induced protein patterns during mixed symbiotic and pathogenic infections indicate bioprotective effects due to symbiotic co-infection. Several 14-3-3 proteins were found as predominant proteins during mixed infections. With respect to hormone-regulation, A. euteiches infection led to induction of ABA-related pathways, while auxin-related pathways are induced during symbiosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.