Abstract

Single ligature nerve constriction (SLNC) is a newly developed animal model for the study of neuropathic pain. SLNC of the rat sciatic nerve induces pain-related behaviors, as well as changes in the expression of neuropeptide tyrosine and the Y 1 receptor in lumbar dorsal root ganglia (DRGs) and spinal cord. In the present study, we have analyzed the expression of another neuropeptide, galanin, in lumbar DRGs and spinal cord after different degrees of constriction of the rat sciatic nerve. The nerve was ligated and reduced to 10–30, 40–80 or 90% of its original diameter (light, medium or strong SLNCs). At different times after injury (7, 14, 30, 60 days), lumbar 4 and 5 DRGs and the corresponding levels of the spinal cord were dissected out and processed for galanin-immunohistochemistry. In DRGs, SLNC induced a gradual increase in the number of galanin-immunoreactive (IR) neurons, in direct correlation with the degree of constriction. Thus, after light SLNC, a modest upregulation of galanin was observed, mainly in small-sized neurons. However, following medium or strong SLNCs, there was a more drastic increase in the number of galanin-IR neurons, involving also medium and large-sized cells. The highest numbers of galanin-IR neurons were detected 14 days after injury. In the dorsal horn of the spinal cord, medium and strong SLNCs induced a marked ipsilateral increase in galanin-like immunoreactivity in laminae I–II. These results show that galanin expression in DRGs and spinal cord is differentially regulated by different degrees of nerve constriction and further support its modulatory role on neuropathic pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.