Abstract

Two‐dimensional gel electrophoresis was used to identify differentially displayed proteins expressed during the early symbiotic interactions between the bacterium Frankia and actinorhizal plants. Myricaceae, the most primitive actinorhizal family, was used as an experimental model to study specificity mechanisms because it includes species with either narrow or large specificity. Seed phenolic extracts from two Myricaceae species, Myrica gale, a narrow specificity host and Morella cerifera considered as a promiscuous host, were used to induce three Frankia strains ACN14a, M16467 and Ea112. The global protein pattern was altered by exposure to the plant extracts. The addition of 30 mg l−1 of seed phenolic extracts provoked the inhibition of many protein biosynthesis whereas 1 and 10 mg l−1 induced a global reprogramming of Frankia protein pattern. Changes in intensity of 115 spots in response to seed extracts were detected and analyzed by matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Fifty proteins were efficiently identified with Frankia protein data banks deduced from the sequences of Frankia strains ACN14a and EaN1pec genomes. Differential proteins were involved in different metabolism pathways such as glycolysis and gluconeogenesis, transcription, fatty acids, carbohydrates, coenzymes and purines metabolisms. Chaperones biosynthesis and iron transport regulation, essential for nitrogen fixation, seem to be strain dependant. Several proteins possibly involved in the regulation of nodulation were also differentially expressed. The most obvious response was the upregulation of oxidative stress proteins such as FeSOD and Tellurium resistance proteins, suggesting a reorganization of Frankia metabolism to protect against host plant defense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call