Abstract

Schizophrenia and Attention-Deficit/Hyperactivity Disorder (ADHD) are associated with similar deficits in working memory, attention, and inhibition. Both disorders also involve abnormalities of white matter integrity, possibly reflecting neural communication disruptions. There are likely some regional white matter abnormalities that underlie the common cognitive impairment, though also some regional abnormalities unique to each disorder. We used diffusion tensor imaging (DTI) to compare white matter integrity, as indicated by fractional anisotropy (FA), in adolescents with schizophrenia ( n = 15) or ADHD ( n = 14) and healthy controls ( n = 26). Schizophrenia patients had uniquely low FA, relative to the other two groups, in bilateral cerebral peduncles, anterior and posterior corpus callosum, right anterior corona radiata, and right superior longitudinal fasciculus. ADHD patients had uniquely high FA in left inferior and right superior frontal regions. Both clinical groups had lower FA than controls in left posterior fornix. The two disorders generally demonstrated distinct patterns of abnormal connectivity suggesting that common cognitive and behavioral deficits derive from distinct sources, though the posterior fornix may be involved in both disorders. Schizophrenia was associated with abnormally low FA in widespread circuitry indicative of general connectivity disruptions, whereas ADHD was associated with abnormally high FA in frontal networks that may indicate impaired branching of fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call