Abstract

The responsiveness of hypothalamic CRF to various stressors is reduced in the young female Lewis relative to the histocompatible Fischer rat. Whether such a difference impacts the brain-gut response to water avoidance stress was investigated by monitoring Fos immunoreactivity in the brain and sacral spinal cord and fecal pellet output. Exposure for 60 min to water avoidance stress increased the number of Fos positive cells in the paraventricular nucleus of the hypothalamus (PVN), nucleus tractus solitarius (NTS), and the parasympathetic nucleus of the lumbo-sacral spinal cord (L6-S1) in both Lewis and Fischer rats compared with non stress groups. The Fos response was lower by 32.0% in the PVN, and 63% in sacral parasympathetic nucleus in Lewis compared with Fischer rats while similar Fos expression was observed in the NTS. Stress-induced defecation was reduced by 52% in Lewis compared with Fischer rats while colonic motor response to CRF injected intracisternally resulted in a similar pattern and magnitude of defecation in both strains. The CRF receptor antagonist [ d-Phe12,Nle 21,38C aMeLeu 37]-CRF 12–41 injected intracisternally antagonized partly the defecation response in Lewis and Fischer rats. These data indicate that a lower activation of PVN and sacral parasympathetic nuclei in Lewis compared with Fisher rats may contribute to the differential colonic motor response and that the blunted CRF hypothalamic response to stress, unlike responsiveness to central CRF plays a role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call