Abstract

Lactating (L) mice display fierce aggression towards novel, male mice, while virgin (V) mice do not. This study compares patterns of brain activation in V and L mice in response to a novel intruder using immunohistochemical detection of Fos (Fos-IR). Animals were sampled 120 min after either a sham or real 10 min test with a male intruder. L mice were aggressive towards intruders, but V mice were not. In general, Fos-IR for both groups increased with exposure to an intruder, with L mice showing higher increases in Fos-IR than V mice. In only medial preoptic nucleus and ventral portion of bed nucleus of stria terminalis (BNST) was Fos-IR significantly increased in both groups with testing. In V mice, testing resulted in Fos-IR increases in an additional 10 regions examined that did not reach significance in L mice, including lateral septum, lateral and medial preoptic areas, and anterior hypothalamus. Fos-IR also increased with testing in nine regions unique to L mice, including the mitral and granular layers of accessory olfactory bulb, regions of the amygdala, dorsal BNST, and caudal portions of the hypothalamic attack area. These increases in Fos-IR with testing suggest alterations in the circuitry governing response to pheromonal cues and imply some commonalities between the circuitries governing maternal aggression and intermale aggression. These results support the hypothesis that pregnancy and lactation induce substantial changes in brain circuitry and function; changes that enable maternal defense of offspring by altering the neural response to an intruder male.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.