Abstract
Motivated by symplectic geometry, we give a detailed account of differential forms and currents on orbifolds with corners, the pull-back and push-forward operations, and their fundamental properties. We work within the formalism where the category of orbifolds with corners is obtained as a localization of the category of étale proper groupoids with corners. Constructions and proofs are formulated in terms of the structure maps of the groupoids, avoiding the use of orbifold charts. The Fréchet space of differential forms on an orbifold and the dual space of currents are shown to be independent of which étale proper groupoid is chosen to represent the orbifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.