Abstract

We identify primal and dual formulations in the finite element method (FEM) solution of the vector wave equation using a geometric discretization based on differential forms. These two formulations entail a mathematical duality denoted as Galerkin duality. Galerkin-dual FEM formulations yield identical nonzero (dynamical) eigenvalues (up to machine precision), but have static (zero eigenvalue) solution spaces of different dimensions. Algebraic relationships among the degrees of freedom of primal and dual formulations are explained using a deep-rooted connection between the Hodge-Helmholtz decomposition of differential forms and Descartes-Euler polyhedral formula, and verified numerically. In order to tackle the fullness of dual formulation, algebraic and topological thresholdings are proposed to approximate inverse mass matrices by sparse matrices

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.