Abstract
Adriamycin-stimulated formation of .OH in sensitive and resistant subline of human breast tumor cells (MCF-7) has been examined by electron spin resonance spectroscopy. It was shown that adriamycin significantly stimulated the formation of .OH spin adducts [5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH] in the sensitive cells but not in the resistant cells. By use of spin-broadening techniques and inhibition of .OH with high molecular weight poly(ethylene glycol), which does not enter intact cells, it was shown that 60-65% of adriamycin-induced .OH were located extracellularly and were metal ion dependent since they were decreased in the presence of desferal. Furthermore, superoxide dismutase and catalase, enzymes that detoxify superoxide and hydrogen peroxide, also significantly inhibited adriamycin-induced .OH formation and protected against the cytotoxicity of adriamycin. The differential .OH formation in these two cell lines is not due to diminished activities of flavin-dependent activating enzymes nor decreased accumulation of the drug in the cells but appears to be related to enhanced activities of detoxifying enzymes, particularly, glutathione peroxidases in the resistant cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.