Abstract
To achieve precise control of the symmetrical unmanned surface vehicle (USV) under strong external disturbances, we propose a disturbance estimation and conditional disturbance compensation control (CDCC) scheme. First, the differential flatness method is applied to convert the underactuated model into a fully actuated one, simplifying the controller design. Then, a nonlinear disturbance observer (NDOB) is designed to estimate the lumped disturbance. Subsequently, a continuous disturbance characterization index (CDCI) is proposed, which not only indicates whether the disturbance is beneficial to the system stability but also makes the controller switch smoothly and suppresses the chattering phenomenon greatly. Indicated by the CDCI, the proposed CDCC method can not only utilize the beneficial disturbance but also compensate for the detrimental disturbance, which improves the USV’s control performance under strong external disturbances. Moreover, a trajectory-planning method is designed to generate an obstacle avoidance reference trajectory for the controller. Finally, simulations verify the feasibility of applying the proposed control method to USV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.