Abstract

Generating agile maneuvers for a quadrotor with a cable-suspended load is a challenging problem. State-of-the-art approaches often need significant computation time and complex parameter tuning. We use a coordinate-free geometric formulation and exploit a differential flatness based hybrid model of a quadrotor with a cable-suspended payload. We perform direct collocation on the differentially-flat hybrid system, and use complementarity constraints to avoid specifying hybrid mode sequences. The non-differentiable obstacle avoidance constraints are reformulated using dual variables, resulting in smooth constraints. We show that our approach has lower computational time than the state-of-the-art and guarantees feasibility of the trajectory with respect to both the system dynamics and input constraints without the need to tune lots of parameters. We validate our approach on a variety of tasks in both simulations and experiments, including navigation through waypoints and obstacle avoidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.