Abstract

In complex environments and crowded pedestrian scenes, the overlap or loss of local features is a pressing issue. However, existing methods often struggle to strike a balance between eliminating interfering features and establishing feature connections. To address this challenge, we introduce a novel pedestrian detection approach called Differential Feature Fusion under Triplet Global Attention (DFFTGA). This method merges feature maps of the same size from different stages to introduce richer feature information. Specifically, we introduce a pixel-level Triplet Global Attention (TGA) module to enhance feature representation and perceptual range. Additionally, we introduce a Differential Feature Fusion (DFF) module, which optimizes features between similar nodes for filtering. This series of operations helps the model focus more on discriminative features, ultimately improving pedestrian detection performance. Compared to benchmarks, we achieve significant improvements and demonstrate outstanding performance on datasets such as CityPersons and CrowdHuman.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.