Abstract

We review the notion of differential Fay identities and demonstrate, through case studies, its new role in integrable hierarchies of the KP type. These identities are known to be a convenient tool for deriving dispersionless Hirota equations. We show that differential (or, in the case of the Toda hierarchy, difference) Fay identities play a more fundamental role. Namely, they are nothing but a generating functional expression of the full set of auxiliary linear equations, hence substantially equivalent to the integrable hierarchies themselves. These results are illustrated for the KP, Toda, BKP and DKP hierarchies. As a byproduct, we point out some new features of the DKP hierarchy and its dispersionless limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.