Abstract
Rice blast, caused by the fungus, Magnaporthe grisea (M. grisea), lead to the decrease of rice yields widely and destructively, threatening global food security. Although many resistant genes had been isolated and identified in various rice varieties, it is still not enough to clearly understand the mechanism of race-specific resistant ability in rice, especially on the protein level. In this research, proteomic methods were employed to analyze the differentially expressed proteins (DEPs) in susceptible rice variety CO39 and its two near isogenic lines (NILs), CN-4a and CN-4b, in response to the infection of two isolates with different pathogenicity, GUY11 and 81278ZB15. A total of 50 DEPs with more than 1.5-fold reproducible change were identified. At 24 and 48 hpi of GUY11, 32 and 16 proteins in CN-4b were up-regulated, among which 16 and five were paralleled with the expression of their corresponding RNAs. Moreover, 13 of 50 DEPs were reported to be induced by M. grisea in previous publications. Considering the phenotypes of the three tested rice varieties, we found that 21 and 23 up-regulated proteins were responsible for the rice resistant ability to the two different blast isolates, 81278ZB15 and GUY11, respectively. Two distinct branches corresponding to GUY11 and 81278ZB15 were observed in the expression and function of the module cluster of DEPs, illuminating that the DEPs could be responsible for race-specific resistant ability in rice. In other words, DEPs in rice are involved in different patterns and functional modules’ response to different pathogenic race infection, inducing race-specific resistant ability in rice.
Highlights
Rice is the dominant staple crop in the world, and the demand for rice production is still rising with the increasing population
C101PKT (CN-4a) and C105TTP-4L-23 (CN-4b) with single blast resistant genes were developed by backcrossing resistant donor rice cultivars, Pai-Kan-Tao and Tetep, to the recurrent
C101PKT (CN-4a) and C105TTP-4L-23 (CN-4b) with single blast resistant genes were developed by backcrossing resistant donor rice cultivars, Pai-Kan-Tao and Tetep, to the recurrent parent, CO39, respectively
Summary
Rice is the dominant staple crop in the world, and the demand for rice production is still rising with the increasing population. Rice blast caused by the fungus (M. grisea) leads to the decrease of rice yields widely and destructively, threatening global food security [1,2]. Nodes, collars, panicles, and roots are infected by the pathogen at all growth stages [3]. Pesticides have been over-applied to control rice blast, resulting in globe pollution. The use of rice cultivars with resistant ability to blast fungus has been regarded as the most economical and environmental friendly approach to control this disastrous disease [4,5,6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.