Abstract

Scaffold materials used for bone defect repair are often limited by osteogenic efficacy. Moreover, microRNAs (miRNAs) are involved in regulating the expression of osteogenic-related genes. In previous studies, we verified the enhancement of osteogenesis using a grooved porous hydroxyapatite scaffold (HAG). In the present study, we analyzed the contribution of HAG to the osteogenic differentiation of human placenta-derived mesenchymal stem cells (hPMSCs) from the perspective of miRNA differential expression. Furthermore, results showed that miRNAs were differentially expressed in the osteogenic differentiation of hPMSCs cocultured with HAG. In detail, 16 miRNAs were significantly upregulated and 29 miRNAs were downregulated with HAG. In addition, bioinformatics analyses showed that the differentially expressed miRNAs were enriched in a variety of biological processes, including signal transduction, cell metabolism, cell junctions, cell development and differentiation, and that they were associated with osteogenic differentiation through axon guidance, mitogen-activated protein kinase, and the transforming growth factor beta signaling pathway. Furthermore, multiple potential target genes of these miRNAs were closely related to osteogenic differentiation. Importantly, overexpression of miR-146a-5p (an upregulated miRNA) promoted the osteogenic differentiation of hPMSCs, and miR-145-5p overexpression (a downregulated miRNA) inhibited the osteogenic differentiation of hPMSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.