Abstract

Plants respond differently to salinity stress due to their unique gene architectures. Among genes, transcription factors (TFs) regulate many physiological and biochemical processes by modulating the rate of transcription initiation of target genes. Modulation of TFs has been correlated to the salt adaptation of any given genotype. In order to identify the expression of eight TFs (belong to bHLH, CBF, MYB, WRKY, and Zpt2 families) in three annual Medicago genotypes (M. polymorpha cv. Ieze, M. laciniata cv. Shushtar, and M. laciniata cv. Gheshm) under salinity stress, the RT-qPCR analyses were performed. Attempts were also made to establish relationships between gene expression profiles and morpho-physiological traits in these genotypes. In response to salinity, cv. Ieze had minimal changes in biomass, the electrolyte leakage, H2O2 content, and the higher ratio of reduced to oxidized glutathione than the other genotypes. Furthermore, Ieze had lower accumulation of Na+ and less decrease in K+ content. Altogether, it is concluded that Ieze could be regarded as a salt tolerant genotype. Transcriptome profile showed considerable variation across Medicago genotypes and among plant tissues. Among five TFs, Zpt2-2 and CBF4 had higher expression in salt-tolerant genotypes suggesting these genes as good candidates in genetic improvement programs to produce stress-tolerant plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.