Abstract

Hair cells of the inner ear are damaged by intense noise, aging, and aminoglycoside antibiotics. Gentamicin causes oxidative damage to hair cells, inducing apoptosis. In mammals, hair cell loss results in a permanent deficit in hearing and balance. In contrast, avians can regenerate lost hair cells to restore auditory and vestibular function. This study examined the changes of myosin VI and myosin VIIa, two unconventional myosins that are critical for normal hair cell formation and function, during hair cell death and regeneration. During the late stages of apoptosis, damaged hair cells are ejected from the sensory epithelium. There was a 4-5-fold increase in the labeling intensity of both myosins and a redistribution of myosin VI into the stereocilia bundle, concurrent with ejection. Two separate mechanisms were observed during hair cell regeneration. Proliferating supporting cells began DNA synthesis 60 hours after gentamicin treatment and peaked at 72 hours postgentamicin treatment. Some of these mitotically produced cells began to differentiate into hair cells at 108 hours after gentamicin (36 hours after bromodeoxyuridine (BrdU) administration), as demonstrated by the colabeling of myosin VI and BrdU. Myosin VIIa was not expressed in the new hair cells until 120 hours after gentamicin. Moreover, a population of supporting cells expressed myosin VI at 78 hours after gentamicin treatment and myosin VIIa at 90 hours. These cells did not label for BrdU and differentiated far too early to be of mitotic origin, suggesting they arose by direct transdifferentiation of supporting cells into hair cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call