Abstract

A general amino acid permease cDNA (AAP2) was isolated from Arabidopsis by complementation of a yeast mutant defective in citrulline uptake. Direct transport measurements in yeast show that the protein mediates uptake of L-[14C]-citrulline and L-[14C]-proline. Detailed analyses of the substrate specificity by competition studies demonstrate that all proteogenic amino acids are recognized by the carrier, including those that represent the major transport forms of reduced nitrogen in many species, i.e. glutamine, glutamate and asparagine. Thus, AAP2 is less selective as compared with AAP1 and transports basic amino acids such as histidine as shown by expression in a histidine transport-deficient yeast strain. The predicted polypeptide of 53 kDa is highly hydrophobic with 12 putative membrane-spanning regions and shows significant homologies to the Arabidopsis broad specificity permease AAP1, and a limited homology to bacterial branched chain amino acid transporters, but not to any other known proteins. Alterations in the charged residues as compared with AAP1 in four regions might be involved in the difference in selectivity towards basic amino acids. Both genes are highly expressed in developing pods indicating a role in supplying the developing seeds with reduced nitrogen. AAP2 is selectively expressed in the stem and might therefore play a role in xylem-to-phloem transfer of amino acids during seed filling. Furthermore in situ hybridization shows that both genes are expressed in the vascular system of cotyledons in developing seedlings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.