Abstract
The present study was conducted to evaluate the responses of three annual Medicago species (M. truncatula, M. laciniata, and M. polymorpha) to salinity. We analyzed publicly available microarray data in NCBI pertaining to salinity-response genes in M. truncatula. Our data search identified Tubby C2 (TLP) and ethylene responsive transcription factor 1 (ERF1) as genes that potentially respond to salinity. We evaluated morpho-physiological traits and the expression of the genes in three Medicago species that had been maintained under control and saline conditions. The analysis of morpho-physiological traits showed that M. polymorpha and M. laciniata were more tolerant to salinity than M. truncatula, as they had lower reductions in biomass and dry root weight and lower increases in anthocyanin concentration. The saline conditions caused a significant increase (P < 0.01) in the expression of TLP in all Medicago species, but caused a significant decrease in the expression of ERF1. Considerable variation in anthocyanin concentrations was found among the three Medicago species. To investigate the cause of this variation, we examined the expression of R2R3MYB, a gene involved in the biosynthesis of anthocyanins. Our analysis showed that saline conditions induced high over-expression of R2R3MYB in all three Medicago spp. The high efficiency of the primer pairs used in qRT-PCR enabled us to compare the expression levels of each gene in the three species. We concluded that the more salt tolerant species showed higher expression of TLP and R2R3MYB under both control and salinity conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.