Abstract

The histone family of proteins is subdivided into two major groups: the main type histones, which are synthesized in coordination with DNA replication during the S-phase of the cell cycle, and the replacement histones, which can be synthesized in the absence of DNA replication substituting main type histone isoforms. Accumulation of replacement histone variants has been observed in several terminally differentiated tissues that have stopped cell division. The replacement subtype of the H3 class is termed H3.3. This protein is encoded by two different genes ( H3.3A and H3.3B) that both code for the same amino acid sequence, but differ in nucleotide sequences and gene organization. This has been shown for human and avian H3.3A and H3.3B genes and for a murine H3.3B cDNA. In an attempt to define patterns of replacement histone H3.3 gene expression during male germ cell differentiation, we have constructed mouse testicular cDNA libraries and have isolated cDNAs corresponding to the murine H3.3A and H3.3B genes. Using probes specific for these two different genes we show by RNase protection analysis and by nonradioactive in situ hybridization with testis sections that H3.3A mRNA is present in pre- and postmeiotic cells, whereas expression of the H3.3B gene is essentially restricted to cells of the meiotic prophase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call