Abstract

The unicellular green alga Chlamydomonas reinhardtii adapts to anaerobic or hypoxic conditions by developing a complex fermentative metabolism including the production of molecular hydrogen by [FeFe]-hydrogenase isoform1 (HYDA1). HYDA1 transcript and hydrogenase protein accumulate in the absence of oxygen or copper (Cu). Factors regulating this differential gene expression have been unknown so far. In this study, we report on the isolation of a Chlamydomonas mutant strain impaired in HYDA1 gene expression by screening an insertional mutagenesis library for HYDA1 promoter activity using the arylsulfatase-encoding ARYLSULFATASE2 gene as a selection marker. The mutant strain has a deletion of the COPPER RESPONSE REGULATOR1 (CRR1) gene encoding for CRR1, indicating that this SQUAMOSA-PROMOTER BINDING PROTEIN (SBP) domain transcription factor is involved in the regulation of HYDA1 transcription. Treating the C. reinhardtii wild type with mercuric ions, which were shown to inhibit the binding of the SBP domain to DNA, prevented or deactivated HYDA1 gene expression. Reporter gene analyses of the HYDA1 promoter revealed that two GTAC motifs, which are known to be the cores of CRR1 binding sites, are necessary for full promoter activity in hypoxic conditions or upon Cu starvation. However, mutations of the GTAC sites had a much stronger impact on reporter gene expression in Cu-deficient cells. Electrophoretic mobility shift assays showed that the CRR1 SBP domain binds to one of the GTAC cores in vitro. These combined results prove that CRR1 is involved in HYDA1 promoter activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.