Abstract

Lipid accumulated in embryos produced in vitro has been linked to reductions in both quality and postcryopreservation viability. Therefore, the objective of the present study was to investigate the influence of lipid-reducing chemicals on embryo development, quality, and postcryopreservation viability, in addition to expression profiles of selected lipid metabolism-regulating genes. Bovine cumulus-oocyte complexes were matured and fertilized in vitro; eight-cell stage embryos were cultured in IVC medium supplemented with phenazine ethosulfate (PES), l-carnitine (LC), PES + LC, or no supplementation (control). Culturing embryos in medium with LC increased (P < 0.05) blastocyst rate (38.8%) compared with the other groups (control = 28.1%, PES = 27.1%, PES + LC = 26.3%). Embryos cultured with supplements had greater total cell number and fewer apoptotic cells than the control. Cytoplasmic lipid content was reduced, whereas mitochondria density was increased in embryos treated with culture supplements; this was linked to altered expression profiles of selected genes regulating lipid metabolism. For example, transcript abundance of transmembrane lipid gene (SGPP1) was greater in LC- and PES-treated embryos, and they had increased postcryopreservation hatching ability (indicative of embryo cryotolerance). In conclusion, the two lipid metabolism regulators added to the culture media had improved embryo quality and cryotolerance, but embryo development rate and downstream lipid metabolism-regulating genes were more influenced with LC supplementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call