Abstract

Alterations in the p16(INK4a) gene have been implicated in the pathogenesis of different human cancers and animal tumors. We postulated that alterations in the p16(INK4a) gene may also be involved in mouse colon tumorigenesis induced by the chemical carcinogen azoxymethane (AOM). In the present study, p16(INK4a) deletion status and its expression were examined in an AOM-induced mouse colon tumor model. Polymerase chain reaction-based deletion analysis of p16(INK4a) exon 2 showed no deletions in the colon tumors. The expression and localization of p16(INK4a) and its gene product were examined by reverse transcription-polymerase chain reaction and immunohistochemical analyses, respectively. The p16(INK4a) mRNA levels were low, and in some cases undetectable, in control colon tissue. However, colon tumors exhibited an eightfold increase in p16(INK4a) mRNA level when compared with control colon tissue (P < 0.01). Whereas control colon epithelium was uniformly negative for p16(INK4a) immunoreactivity, p16(INK4a)-immunoreactive cells were markedly increased in preneoplastic lesions and adenomas isolated from AOM-treated mice. To further examine the p16(INK4a) regulatory pathway, the retinoblastoma tumor-suppressor protein (Rb) was also examined immunohistochemically in these tissues. A heterogeneous Rb immunostaining was observed in preneoplastic lesions and adenomas. Immunohistochemical analysis also showed a reciprocal relationship between p16(INK4a) and Rb protein expression. These findings suggest that alterations in the p16(INK4a)/Rb pathway may play an important role in AOM-induced mouse colon tumorigenesis. Mol. Carcinog. 28:139-147, 2000.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.