Abstract

Hepatocyte growth factor is a multifunctional polypeptide that has been implicated in cancer growth, tissue development and wound repair. It is mainly synthesized in mesenchymal cells and acts on epithelial cells, where its actions are dependent on binding to a specific cell-surface hepatocyte growth factor receptor (c-Met). In an artificial anus, two different types of epithelial cells (ductal cells of the colon and squamous cells of the skin) intermingle with each other. In the present study, we examined the localization of hepatocyte growth factor and c-Met during the process of repair in a rat artificial anus model, and attempted to clarify the cell types that express hepatocyte growth factor or c-Met messenger RNA by in situ hybridization. Western blot analysis revealed abundant localization of the mature form of hepatocyte growth factor in artificial anal tissues. Moderate hepatocyte growth factor immunoreactivity was noted in regenerated squamous cells in the skin and colonic ductal cells, and strong expression in macrophages and fibroblasts. Moderate c-Met immunoreactivity was present in regenerated epithelial cells in the skin and colon. Throughout the repair process, hepatocyte growth factor and c-Met immunoreactivities were more prominently localized in the squamous cells of the skin than in colonic ductal cells. Competitive reverse transcription-polymerase chain reaction analysis revealed that hepatocyte growth factor mRNA was maximal on day 14 after the operation; however, c-Met mRNA expression had two peaks, on day 1 and day 7. Hepatocyte growth factor mRNA was expressed more in the stromal fibroblasts, macrophages and endothelial cells, and c-Met mRNA was predominant in regenerated squamous cells of the skin. These findings suggest the possibility that hepatocyte growth factor may act in a paracrine manner to mainly enhance the growth of squamous cells of the skin and to a lesser extent the ductal cells of the colon in the artificial anus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.