Abstract
AbstractWildlife faces an increasing threat from extreme climatic events, such as heatwaves, which can have a severe impact on various species, including crucial pollinators like bumblebees. Bumblebees are cold‐adapted and heterothermic, possessing the ability to regulate their internal temperature. The impact of heat stress seems species specific in bumblebees. While most species are impacted, some bumblebee species manage to survive, potentially by employing physiological mechanisms, including the modulation of their protein profile (e.g. Heat Shock Proteins). However, there is limited understanding of how their protein profiles are associated with heat exposure. In this study, we examined the global variation in the protein profile of males from two bumblebee species sampled in the wild: the heat‐tolerant Bombus terrestris and the heat‐sensitive Bombus magnus. After subjecting them to heat stupor at 40°C in controlled condition, it was observed that nearly all B. terrestris survived the stress, while over 50% of B. magnus individuals succumbed to the heat exposure. Through off‐gel bottom‐up proteomics and LC–MS/MS analysis of the hemolymph proteome, we identified 164 proteins in both species with a large part of differentially expressed proteins after heat exposure. Additionally, quantitative analysis of fat bodies revealed that the relative mass was stable in B. terrestris, while it was significantly lower in B. magnus exposed to heat stress. Our data suggest that compared with B. magnus, B. terrestris displays a higher adaptability of its hemolymph proteome in response to heat stress. This adaptability could be a key factor contributing to the high physiological resistance of B. terrestris and its ability to adapt to new, stressful environments expected due to climate change. Understanding these mechanisms of protein regulation in bumblebees could provide valuable insights into their resilience and vulnerability facing environmental stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.