Abstract
A model of demyelination induced by Theiler's murine encephalomyelitis virus (TMEV) was used to study differential regulation of class I MHC gene products in the brain and spinal cord of resistant (B10) and susceptible (B10.Q and B10.RBQ) mice. Allelic polymorphisms in the H-2D region, but not the H-2K region, play a primary role in determining susceptibility to late demyelinating disease. However, even though significant structural diversity distinguishes class I alleles, there are no discernible K or D-specific patterns of structural diversity within the peptide binding domains of these glycoproteins. Our hypothesis was that D region association of susceptibility to demyelination was related to differences in the expression of the K and D Ag in the central nervous system (CNS) after TMEV infection. Using allele-specific mAb and an immunoperoxidase technique, we demonstrated transient but equivalent increases in K and D Ag expression in the brain and spinal cord of resistant mice beginning 7 days after TMEV infection, which returned to baseline by 90 days. However, when genetically susceptible animals were examined, a significantly greater increase in D expression relative to K expression was seen in the brain and spinal cord at all post-infection observation periods. Immunosuppression of genetically resistant animals before TMEV infection, which results in viral persistence, was accompanied by equivalent increases in both the K and D Ag. Depletion of CD8+ T cells, but not CD4+ T cells, in susceptible mice ablated class I expression in the CNS in response to TMEV infection, implying that CD8+ cells contribute to the differential regulation of K and D Ag in the CNS. These findings are consistent with the hypothesis that differences in gene regulation may account for different roles of the K and D loci play in determining resistance and susceptibility to TMEV-induced demyelinating disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.