Abstract
Protocadherins are cadherin-like molecules with adhesive and signaling functions, in particular, during neuronal development. Large protocadherin (Pcdh) gene clusters are present in the genome of vertebrates. In the zebrafish, two Pcdh clusters are found on chromosomes 10 (DrPcdh1) and 14 (DrPcdh2), each divided into subclusters of DrPcdhalpha and DrPcdhgamma family genes. In total, about 100 different DrPcdh molecules are predicted. We have analyzed the expression of the four DrPcdh subclusters and find that DrPcdh transcripts are upregulated in the developing zebrafish nervous system. In the adult fish brain, all four DrPcdh clusters are expressed in differentiated neurons, in particular, in the thalamic nuclei, tectum, and cerebellum. We show that expression patterns grossly overlap for each cluster but with regional differences and variations in strength of expression. Strikingly, the DrPcdh2gamma cluster, distinct from the three other clusters, is also expressed in neuronal precursor cells and ependymal cells of the embryonic and adult nervous system, as well as in specific non-neuronal epithelia. Antibodies to a conserved motif in the constant region of DrPcdh2gamma stain fiber tracts and neuropil of the zebrafish brain and cell-cell junctions in epithelia. Our results indicate that multiple DrPcdhs of the different clusters are expressed in differentiated zebrafish neurons, suggesting evolutionarily conserved functions of protocadherin clusters in cell adhesion and signaling. In addition, DrPcdh2gamma may exert more specific roles in neuronal precursor and non-neural epithelial cells, which have not yet been described for mammalian Pcdhgamma. Thus, our findings in zebrafish open new perspectives to examine these functions in other vertebrate model organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.