Abstract

The development of the metanephros in one-humped camels involves a complex series of interactions between epithelial and mesenchymal cells. As a result, there is a synchronized differentiation process of stromal, vascular and epithelial cell types during glomerulogenesis, angiogenesis and tubulogenesis. In the current work, the metanephros of camel foetuses were divided into four stages where kidneys from each stage were processed and immunoassayed, followed by quantitative analysis to determine target protein intensities throughout metanephrogenesis in the camel. This study demonstrated robust expression of α-smooth muscle actin (α-SMA) in the glomerular mesangium, as well as in interlobular and glomerular arterioles during the earlier stages of development. However, in the late stages, α-SMA expression became more localized around the blood capillaries in both the cortex and medulla. Strong expression of CD34 was observed in the immature glomerular and peritubular endothelial cells within the subcapsular zone, as well as in the glomerular, proximal tubular and distal tubular epithelium of stage one foetuses, although its expression gradually diminished with foetal maturation. The expression pattern of osteopontin was prominently observed in the distal convoluted tubules throughout all stages, however, no expression was detected in the proximal tubules, glomeruli and arterioles. E-cadherin was detected in the developing renal tubular epithelial cells but not in the glomeruli. In conclusion, this study reveals the spatiotemporal distribution of key proteins, including α-SMA, CD34, Osteopontin and E-cadherin, which play a crucial role in metanephrogenesis in camel foetuses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.