Abstract

Tooth eruption at the early postnatal period is strictly controlled by the molecules secreted mainly from follicular tissues, which recruit monocytes for osteoclast formation. In this study, it was hypothesized that different molecules can be expressed according to the stages of tooth eruption. Rat molar germs together with follicles were extracted and DD-PCR was performed from the root formation stage 2nd molars germs (after eruptive movement) and cap stage 3rd molar germs (before movement) at postnatal day 9. Cxcl-14, a potent chemoattractant, was detected as one of the differentially expressed molecules from DD-PCR. Its expression increased significantly at the root formation stage, compared with the cap or crown formation stage at both transcription and translation levels. The expression patterns of cxcl-14 were consistent with those of MCP-1 and CSF-1, and opposite to OPG. Immunofluorescence showed that cxcl-14 was localized in the dental follicular tissues only at the root formation stage overlaying the proximo-occlusal region of the molar germs. Many osteoclasts appeared on the surface of the alveolar bone which overlayed the occlusal region of the root formation stage 2nd molar germs and underwent resorption. Cxcl-14 expression was reduced considerably at both the translation and transcription levels by an alendronate treatment. These results suggest that cxcl-14 may be implicated in the formation of the eruptive pathway of tooth germs via osteoclastogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call