Abstract

BackgroundIn view of the current interest in exploring the clinical use of mesenchymal stem cells (MSCs) from different sources, we performed a side-by-side comparison of the biological properties of MSCs isolated from the Wharton’s jelly (WJ), the most abundant MSC source in umbilical cord, with bone marrow (BM)-MSCs, the most extensively studied MSC population.MethodsMSCs were isolated and expanded from BM aspirates of hematologically healthy donors (n = 18) and from the WJ of full-term neonates (n = 18). We evaluated, in parallel experiments, the MSC immunophenotypic, survival and senescence characteristics as well as their proliferative potential and cell cycle distribution. We also assessed the expression of genes associated with the WNT- and cell cycle-signaling pathway and we performed karyotypic analysis through passages to evaluate the MSC genomic stability. The hematopoiesis-supporting capacity of MSCs from both sources was investigated by evaluating the clonogenic cells in the non-adherent fraction of MSC co-cultures with BM or umbilical cord blood-derived CD34+ cells and by measuring the hematopoietic cytokines levels in MSC culture supernatants. Finally, we evaluated the ability of MSCs to differentiate into adipocytes and osteocytes and the effect of the WNT-associated molecules WISP-1 and sFRP4 on the differentiation potential of WJ-MSCs.ResultsBoth ex vivo-expanded MSC populations showed similar morphologic, immunophenotypic, survival and senescence characteristics and acquired genomic alterations at low frequency during passages. WJ-MSCs exhibited higher proliferative potential, possibly due to upregulation of genes that stimulate cell proliferation along with downregulation of genes related to cell cycle inhibition. WJ-MSCs displayed inferior lineage priming and differentiation capacity toward osteocytes and adipocytes, compared to BM-MSCs. This finding was associated with differential expression of molecules related to WNT signaling, including WISP1 and sFRP4, the respective role of which in the differentiation potential of WJ-MSCs was specifically investigated. Interestingly, treatment of WJ-MSCs with recombinant human WISP1 or sFRP4 resulted in induction of osteogenesis and adipogenesis, respectively. WJ-MSCs exhibited inferior hematopoiesis-supporting potential probably due to reduced production of stromal cell-Derived Factor-1α, compared to BM-MSCs.ConclusionsOverall, these data are anticipated to contribute to the better characterization of WJ-MSCs and BM-MSCs for potential clinical applications.

Highlights

  • In view of the current interest in exploring the clinical use of mesenchymal stem cells (MSCs) from different sources, we performed a side-by-side comparison of the biological properties of Mesenchymal stem cells (MSC) isolated from the Wharton’s jelly (WJ), the most abundant MSC source in umbilical cord, with bone marrow (BM)-MSCs, the most extensively studied MSC population

  • The population doubling (PD) time ranged from 3.88 ± 1 days (P2) to 10.9 ± 1.7 days (P10) in BM-MSCs versus 1.88 ± 1.18 days (P2) to 4 ± 1.6 days (P10) in WJ-MSCs (P < 0.0001). In accordance with these findings are the results obtained by the MTT assay at a representative passage (P2), which showed that the number of metabolically active BMMSCs, corresponding to the obtained optical density, remained significantly lower during the 21-day culture period, compared to WJ-MSCs (P < 0.0001) (Fig. 1b)

  • These findings suggest that BM-MSCs grow at a significant slower rate compared to WJMSCs

Read more

Summary

Introduction

In view of the current interest in exploring the clinical use of mesenchymal stem cells (MSCs) from different sources, we performed a side-by-side comparison of the biological properties of MSCs isolated from the Wharton’s jelly (WJ), the most abundant MSC source in umbilical cord, with bone marrow (BM)-MSCs, the most extensively studied MSC population. In the past 16 years, the field of mesenchymal stem (stromal) cells (MSCs) has progressed at a great pace, as their exceptional characteristics are being unraveled and encouraging data from preclinical and clinical studies accumulate. In this regard, MSC-based treatment is considered as a promising modality in the therapeutic intervention of various diseases or tissue damage [1]. MSCs from different UC compartments have been reported to possess different biological properties [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call