Abstract

BackgroundBabesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. Each life stage has developmental forms that differ in morphology and metabolism. Differentiation between these forms is highly regulated in response to changes in the parasite’s environment. Understanding the mechanisms by which Babesia parasites respond to environmental changes and the transmission cycle through the biological vector is critically important for developing bovine babesiosis control strategies.ResultsIn this study, we induced B. bovis sexual stages in vitro using xanthurenic acid and documented changes in morphology and gene expression. In vitro induced B. bovis sexual stages displayed distinctive protrusive structures and surface ruffles. We also demonstrated the upregulation of B. bovis calcium-dependent protein kinase 4 (cdpk4), tubulin-tyrosine ligase (ttl), and methyltransferase (mt) genes by in vitro induced sexual stages and during parasite development within tick midguts.ConclusionsSimilar to other apicomplexan parasites, it is likely that B. bovis upregulated genes play a vital role in sexual reproduction and parasite transmission. Herein, we document the upregulation of cdpk4, ttl, and mt genes by both B. bovis in vitro induced sexual stages and parasites developing in the tick vector. Understanding the parasite's biology and identifying target genes essential for sexual reproduction will enable the production of non-transmissible live vaccines to control bovine babesiosis.Graphical abstract

Highlights

  • Babesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide

  • B. bovis cultures induced by decreasing temperature to 26 °C and addition of xanthurenic acid to the culture media showed the presence of extra-erythrocytic parasites with long projections and large round parasite stages, indicative of parasite sexual stage formation (Fig. 1b–d)

  • Analysis of xanthurenic acid (XA)-induced cultured parasites using scanning electron microscopy showed that egress of in vitro-induced sexual stage parasites from infected red blood cells (RBC) began by 3 h after the onset of induction (Fig. 2a)

Read more

Summary

Introduction

Babesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. Each life stage has developmental forms that differ in morphology and metabolism. Differentiation between these forms is highly regulated in response to changes in the parasite’s environment. Understanding the mechanisms by which Babesia parasites respond to environmental changes and the transmission cycle through the biological vector is criti‐ cally important for developing bovine babesiosis control strategies. As the infected larval ticks feed on the vertebrate host, Hussein et al Parasites Vectors (2021) 14:395. After kinete invasion of eggs, the parasites are transmitted transovarially [6]. This results in larval progeny containing B. bovis sporozoites that can infect cattle [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call