Abstract
Temporal expression patterns of the Bordetella pertussis alcaligin, enterobactin and haem iron acquisition systems were examined using alcA-, bfeA- and bhuR-tnpR recombinase fusion strains in a mouse respiratory infection model. The iron systems were differentially expressed in vivo, showing early induction of the alcaligin and enterobactin siderophore systems, and delayed induction of the haem system in a manner consistent with predicted changes in host iron source availability during infection. Previous mixed infection competition studies established the importance of alcaligin and haem utilization for B. pertussis in vivo growth and survival. In this study, the contribution of the enterobactin system to the fitness of B. pertussis was confirmed using wild-type and enterobactin receptor mutant strains in similar competition infection experiments. As a correlate to the in vivo expression studies of B. pertussis iron systems in mice, sera from uninfected and B. pertussis-infected human donors were screened for antibody reactivity with Bordetella iron-repressible cell envelope proteins. Pertussis patient sera recognized multiple iron-repressible proteins including the known outer membrane receptors for alcaligin, enterobactin and haem, supporting the hypothesis that B. pertussis is iron-starved and responds to the presence of diverse iron sources during natural infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.