Abstract

We investigated the expression of anthocyanin structural genes and transcription factors (TFs) associated with varying anthocyanin content during different developmental stages (S1-S4) of the gerbera cultivars 'Nathasha' and 'Rosalin'. Accumulation of anthocyanin started at S1 and reached a maximum at S3 in both cultivars. Enhancement of anthocyanin content in 'Nathasha' was associated with upregulation of ANS and MYB10, whereas in 'Rosalin', upregulation was associated with CHS1, MYB10, and MYC1. Low-temperature exposure (6°C) enhanced anthocyanin content to a greater extent than that at 22°C via stronger upregulation of CHS1 and MYB10 in 'Nathasha' and CHS1 in 'Rosalin', irrespective of flower developmental stage. However, differences in anthocyanin content between the two cultivars were found to be influenced by the expression levels of all structural genes and TFs, irrespective of flower developmental stage and temperature conditions. We suggest that differences in the regulation mechanisms of anthocyanin biosynthesis and coloration pattern between 'Nathasha' and 'Rosalin' are related to differences in the expression patterns of structural genes and TFs; however, further functional studies of the key genes in anthocyanin biosynthesis are needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call