Abstract

In the endometrium two enzymes are known to convert estradiol to its inactive metabolite estrone: microsomal 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2) and peroxisomal 17beta-HSD4. In order to elucidate the particular function of each of these two different enzymes, the human endometrial epithelial cell lines HEC-1-A and RL95-2 were examined with respect to the expression of 17betaHSD isozymes. They were compared with human endometrium in vivo. Non-radioactive in situ hybridization revealed both enzymes in glandular epithelial cells of human endometrium. The two cell lines were screened for mRNA expression of 17beta-HSD 1-4 by RT-PCR and Northern blot. 17beta-HSD2 and 4 could be detected by either method, 17beta-HSD1 only by RT-PCR, 17beta-HSD3 not at all. Both cell lines were proven to have no receptor for progesterone which is known as a physiological inducer of several 17beta-HSD isozymes. To study the regulation of 17beta-HSD2 and 17betaHSD4, the concentration of fetal calf serum in the cell culture media was reduced stepwise to 0.3% by dilution with a defined serum replacement. This treatment led to an inhibition of 17beta-HSD2 mRNA expression and an increase in the mRNA expression of 17beta-HSD4. Concomitantly, distinct morphological changes were observed, such as a decrease in the number and length of microvilli and a decrease in the formation of domes on top of the monolayers. The endometrial epithelial cell lines HEC-1-A and RL95-2 represent a suitable in vitro model for further studies of the differential expression of the major endometrial HSD isozymes, independent of the effect of progesterone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.