Abstract
Knowledge of the specific cell types affected by genetic alterations in rare diseases is crucial for advancing diagnostics and treatments. Despite significant progress, the cell types involved in the majority of rare disease manifestations remain largely unknown. In this study, we integrated scRNA-seq data from non-diseased samples with known genetic disorder genes and phenotypic information to predict the specific cell types disrupted by pathogenic mutations for 482 disease phenotypes. We found significant phenotype-cell type associations focusing on differential expression and co-expression mechanisms. Our analysis revealed that 13% of the associations documented in the literature were captured through differential expression, while 42% were elucidated through co-expression analysis, also uncovering potential new associations. These findings underscore the critical role of cellular context in disease manifestation and highlight the potential of single-cell data for the development of cell-aware diagnostics and targeted therapies for rare diseases. All code generated in this work is available at https://github.com/SergioAlias/sc-coex. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.