Abstract

Centrin protein is an ubiquitously expressed cytoskeletal component and is a member of the EF-hand superfamily of calcium-binding proteins. It was first discovered in the flagellar apparatus of unicellular green algae where it is involved in contraction of Ca(2+)-sensitive structures. Centrin protein is associated with centrosome-related structures such as spindle pole body in yeast, and centriole/basal bodies in flagellar and ciliated cells. Three centrin genes have been cloned in human cells. In this work, we have performed a comparative biochemical and functional analysis of centrin isoforms using a primary culture of human nasal epithelial cells which provides an efficient way to obtain a complete ciliated cell differentiation process. RT-PCR experiments show that the expression of the three human centrin genes increases during cell differentiation, and that only centrin 2 and 3 are expressed during cell proliferation. Using polyclonal antibodies raised against recombinant human centrin 2 and 3, we show a specific pattern of protein expression. Ultrastructural immunolocalization suggests that centrin proteins are involved in the early process of centriole assembly, as they are concentrated within the precursor structures of centriole/basal bodies. It also shows a differential localisation of centrin proteins in mature centriole/basal bodies, suggesting different functions for centrins 1/2 and centrin 3. This is also supported by functional analyses showing that centrin 1 and/or centrin 2 are involved in ciliary beating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call