Abstract

BackgroundTrichoderma spp. are majorly composed of plant-beneficial symbionts widely used in agriculture as bio-control agents. Studying the mechanisms behind Trichoderma-derived plant benefits has yielded tangible bio-industrial products. To better take advantage of this fungal-plant symbiosis it is necessary to obtain detailed knowledge of which genes Trichoderma utilizes during interaction with its plant host. In this study, we explored the transcriptional activity undergone by T. virens during two phases of symbiosis with maize; recognition of roots and after ingress into the root cortex.ResultsWe present a model of T. virens – maize interaction wherein T. virens experiences global repression of transcription upon recognition of maize roots and then induces expression of a broad spectrum of genes during colonization of maize roots. The genes expressed indicate that, during colonization of maize roots, T. virens modulates biosynthesis of phytohormone-like compounds, secretes a plant-environment specific array of cell wall degrading enzymes and secondary metabolites, remodels both actin-based and cell membrane structures, and shifts metabolic activity. We also highlight transcription factors and signal transduction genes important in future research seeking to unravel the molecular mechanisms of T. virens activity in maize roots.ConclusionsT. virens displays distinctly different transcriptional profiles between recognizing the presence of maize roots and active colonization of these roots. A though understanding of these processes will allow development of T. virens as a bio-control agent. Further, the publication of these datasets will target future research endeavors specifically to genes of interest when considering T. virens – maize symbiosis.

Highlights

  • Trichoderma spp. are majorly composed of plant-beneficial symbionts widely used in agriculture as bio-control agents

  • Differential expression analysis The Trichoderma virens transcriptome was analyzed after 6 and 30 h of co-cultivation with maize. These timepoints were defined, respectively, as the “Recognition” phase, wherein T. virens was visibly growing towards maize but had not yet penetrated the roots, and the “Colonization” phase, wherein T. virens had made ingress into the maize root

  • The terminology ‘repressed’ is used to describe genes with a negative log2fold change, i.e. were less abundant when T. virens was grown with maize, and ‘enhanced’ to describe genes with a positive log2fold change, i.e. were more abundant when T. virens was co-cultivated with maize

Read more

Summary

Introduction

Trichoderma spp. are majorly composed of plant-beneficial symbionts widely used in agriculture as bio-control agents. Studying the mechanisms behind Trichoderma-derived plant benefits has yielded tangible bioindustrial products. Trichoderma spp. are mycoparasitic, facultative plant-symbionts that colonize a broad range of plant root systems. Trichoderma-derived plant benefits include enhanced lateral root development, increased nutrient uptake, resistance to abiotic stressors such as heavy metals and reactive oxygen species, and priming plants for pathogen resistance via triggering of ISR (induced systemic resistance). Trichoderma spp. are widely used as agricultural bio-control agents. It is understood that Trichoderma colonizes plant roots in stages: first, actively growing towards roots indicative of root recognition, growing externally on the root surface, followed by ingress in to the root cortex [5, 6]. A recent study by Nogueira-Lopez et al [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call