Abstract

Differential evolution (DE) is simple and effective in solving numerous real-world global optimization problems. However, its effectiveness critically depends on the appropriate setting of population size and strategy parameters. Therefore, to obtain optimal performance the time-consuming preliminary tuning of parameters is needed. Recently, different strategy parameter adaptation techniques, which can automatically update the parameters to appropriate values to suit the characteristics of optimization problems, have been proposed. However, most of the works do not control the adaptation of the population size. In addition, they try to adapt each strategy parameters individually but do not take into account the interaction between the parameters that are being adapted. In this paper, we introduce a DE algorithm where both strategy parameters are self-adapted taking into account the parameter dependencies by means of a multivariate probabilistic technique based on Gaussian Adaptation working on the parameter space. In addition, the proposed DE algorithm starts by sampling a huge number of sample solutions in the search space and in each generation a constant number of individuals from huge sample set are adaptively selected to form the population that evolves. The proposed algorithm is evaluated on 14 benchmark problems of CEC 2005 with different dimensionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.