Abstract

The urban transit routing problem (UTRP) involves the construction of route sets on existing road networks to cater for the transit demand efficiently. This is an NP-hard problem, where the generation of candidate route sets can lead to a number of potential routes being discarded on the grounds of infeasibility. This paper presents a new repair mechanism to complement the existing terminal repair and the make-small-change operators in dealing with the infeasibility of the candidate route set. When solving the UTRP, the general aim is to determine a set of transit route networks that achieves a minimum total cost for both the passenger and the operator. With this in mind, we propose a differential evolution (DE) algorithm for solving the UTRP with a specific objective of minimizing the average travel time of all served passengers. Computational experiments are performed on the basis of benchmark Mandl’s Swiss network. Computational results from the proposed repair mechanism are comparable with the existing repair mechanisms. Furthermore, the combined repair mechanisms of all three operators produced very promising results. In addition, the proposed DE algorithm outperformed most of the published results in the literature.

Highlights

  • IntroductionThe urban transit routing problem (UTRP) which corresponds to the first stage of the bus planning process involves the construction of transit routes on an existing road network based on the travel demand and corresponding link travel times subject to given constraints and requirements such that the routes optimize the desired objective(s) defined by the stakeholders (including users, operators, and society)

  • This paper presents a new repair mechanism to complement the existing terminal repair and the makesmall-change operators in dealing with the infeasibility of the candidate route set

  • The urban transit routing problem (UTRP) which corresponds to the first stage of the bus planning process involves the construction of transit routes on an existing road network based on the travel demand and corresponding link travel times subject to given constraints and requirements such that the routes optimize the desired objective(s) defined by the stakeholders

Read more

Summary

Introduction

The urban transit routing problem (UTRP) which corresponds to the first stage of the bus planning process involves the construction of transit routes on an existing road network based on the travel demand and corresponding link travel times subject to given constraints and requirements such that the routes optimize the desired objective(s) defined by the stakeholders (including users, operators, and society). It represents the single very strategic planning step in the urban bus planning process that seeks to balance the competing objectives of minimizing both passenger and operator costs ([1] [2]).

Literature Review
Mathematical Formulation
Sub-Route Reversal Repair Mechanism
Differential Evolution
Benchmark Data and Experimental Design
Computational Experiments of Repair Mechanisms
Comparative Results of Differential Evolution
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call