Abstract
In this work, a thermally coupled membrane reactor is proposed for methane steam reforming and hydrogenation of nitrobenzene. The steam reforming process is carried out in the assisted membrane surface of the endothermic side, while the hydrogenation reaction of nitrobenzene to aniline is carried out on the other membrane surface of the exothermic side. The differential evolution (DE) strategy is applied to optimize this reactor considering nitrobenzene and methane conversion as the main objectives. The co-current mode is investigated in this study, and the achieved optimization results are compared with those of conventional steam reformer reactor operated under the same feed conditions. The optimum values of feed temperature of exothermic side, feed molar flow rate of nitrobenzene, the steam-to-nitrobenzene molar ratio and the hydrogen-to-nitrobenzene molar ratio are determined during the optimization process. The simulation results show that the methane conversion and consequently hydrogen recovery yield are increased by 39.3% and 1.57, respectively, which contribute to aniline production with 27.3% saving in hydrogen supply from external and a reduction in environmental problems due to 100% nitrobenzene conversion. The optimization results justify the feasibility of coupling these reactions. Experimental proof-of-concept is needed to establish the validity and safe operation of the novel reactor. Copyright © 2012 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.