Abstract

In this paper a further generalization of differential evolution based data classification method is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, for determining the optimal values for all free parameters of the classifier model during the training phase of the classifier. The earlier version of differential evolution classifier that applied individually optimized distance measure for each new data set to be classified is generalized here so, that instead of optimizing a single distance measure for the given data set, we take a further step by proposing an approach where distance measures are optimized individually for each feature of the data set to be classified. In particular, distance measures for each feature are selected optimally from a predefined pool of alternative distance measures. The optimal distance measures are determined by differential evolution algorithm, which is also determining the optimal values for all free parameters of the selected distance measures in parallel. After determining the optimal distance measures for each feature together with their optimal parameters, we combine all featurewisely determined distance measures to form a single total distance measure, that is to be applied for the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; A sample belongs to the class represented by the nearest prototype vector when measured with the above referred optimized total distance measure. During the training process the differential evolution algorithm determines optimally the class vectors, selects optimal distance metrics for each data feature, and determines the optimal values for the free parameters of each selected distance measure. Based on experimental results with nine well known classification benchmark data sets, the proposed approach yield a statistically significant improvement to the classification accuracy of differential evolution classifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.