Abstract
Ramanujan’s differential equations for the classical Eisenstein series are of great importance to many areas in number theory and special functions. H.H. Chan recently demonstrated that these differential equations can be derived from the triple product identity and the quintuple product identity in an elementary manner. In this article, we extend this method in a uniform manner to derive corresponding differential equations for the Eisenstein series of level 2. Several applications of these differential equations are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.