Abstract

We reformulate differential equations (DEs) for Feynman integrals to avoid doubled propagators in intermediate steps. External momentum derivatives are dressed with loop momentum derivatives to form tangent vectors to unitarity cut surfaces, in a way inspired by unitarity-compatible IBP reduction. For the one-loop box, our method directly produces the final DEs without any integration-by-parts reduction. We further illustrate the method by deriving maximal-cut level differential equations for two-loop nonplanar five-point integrals, whose exact expressions are yet unknown. We speed up the computation using finite field techniques and rational function reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.