Abstract
The KPZ fixed point is a 2d random field, conjectured to be the universal limiting fluctuation field for the height function of models in the KPZ universality class. Similarly, the periodic KPZ fixed point is a conjectured universal field for spatially periodic models. For both fields, their multi-point distributions in the space-time domain have been computed recently. We show that for the case of the narrow-wedge initial condition, these multi-point distributions can be expressed in terms of so-called integrable operators. We then consider a class of operators that include the ones arising from the KPZ and the periodic KPZ fixed points, and find that they are related to various matrix integrable differential equations such as coupled matrix mKdV equations, coupled matrix NLS equations with complex time, and matrix KP-II equations. When applied to the KPZ fixed points, our results extend previously known differential equations for one-point distributions and equal-time, multi-position distributions to multi-time, multi-position setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.