Abstract
We demonstrate that quotients of septic theta functions appearing in Ramanujan’s Notebooks and in Klein’s work satisfy a new coupled system of nonlinear differential equations with symmetric form. This differential system bears a close resemblance to an analogous system for quintic theta functions. The proof extends an elementary technique used by Ramanujan to prove the classical differential system for normalized Eisenstein series on the full modular group. In the course of our work, we show that Klein’s quartic relation induces symmetric representations for low-weight Eisenstein series in terms of weight one modular forms of level seven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.