Abstract
AbstractIn this paper we prove, that under certain hypotheses, the planar differential equation: ˙x = X1(x, y) + X2(x, y), ˙y = Y1(x, y) + Y2(x, y), where (Xi, Yi), i = 1, 2, are quasi-homogeneous vector fields, has at most two limit cycles. The main tools used in the proof are the generalized polar coordinates, introduced by Lyapunov to study the stability of degenerate critical points, and the analysis of the derivatives of the Poincar´e return map. Our results generalize those obtained for polynomial systems with homogeneous non-linearities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.