Abstract

Rodent hippocampal activity is correlated with spatial and behavioral context, but how context affects coding in association neocortex is not well understood. The cellular distribution of the neural activity-regulated immediate-early gene Arc was used to monitor the activity history of cells in CA1, and in deep and superficial layers of posterior parietal and gustatory cortices (which encode movement and taste, respectively), during two behavioral epochs in which spatial and behavioral context were independently manipulated while gustatory input was held constant. Under conditions in which the hippocampus strongly differentiated behavioral and spatial contexts, deep parietal and gustatory layers did not discriminate between spatial contexts, whereas superficial layers in both neocortical regions discriminated well. Deep parietal cells discriminated behavioral context, whereas deep gustatory cortex neurons encoded the two conditions identically. Increased context sensitivity of superficial neocortical layers, which receive more hippocampal outflow, may reflect a general principle of neocortical organization for memory retrieval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.