Abstract
We introduce the notion of differential torsors, which allows the adaptation of constructions from algebraic geometry to differential Galois theory. Using these differential torsors, we set up a general framework for applying patching techniques in differential Galois theory over fields of characteristic zero. We show that patching holds over function fields over the complex numbers. As the main application, we prove the solvability of all differential embedding problems over complex function fields, thereby providing new insight on the structure of the absolute differential Galois group, i.e., the fundamental group of the underlying Tannakian category.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.